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To reduce the distortion of high payload watermarking scheme, a reversible watermarking based on

optional prediction-error histogram modification is proposed to improve the watermarked image

fidelity at high embedding rate. By considering the pixel compensation during the multiple layer

embedding, an optional predictor is designed to generate the most appropriate prediction error

schemes, the generated prediction error histogram can be tuned through the selection of threshold for

each layer to strike the balance between capacity and pixel compensation. Compared with the other

schemes, the proposed scheme introduces less distortion and obtains high image quality for the high

embedding rate. The experiments on the standard and military images verify the effectiveness of the

proposed scheme.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The increasing applications of multimedia technology, especially
in military and medical fields, have made the reversible water-
marking becomes a hot research spot in recent years. Reversible
watermarking, which is also called lossless data hiding, is a
technology that embeds the covert information in the digital image
and allows the receiver to recover the original image after the
extraction of covert information. It is widely applied to copyright
protection, ownership allegation and integrity authentication.

Dozens of high payload reversible watermarking techniques had
been proposed over the past few years including difference expand-
ing (DE) [2,3,11,12], histogram shifting (HS) [1,5,6,8–10,12,13],
prediction error expanding (PEE) [7,14–18], and integer transform
[19–24]. Besides, some methods [4,25–27] are proposed recently to
investigate the robustness of reversible watermarking. At present,
two kinds of method are quite effective and widespread. One is HS
based scheme which is proposed by Ni et al. [6] firstly. In [6], Ni
et al. employ peak/zero points in histogram of the given image to
embed the watermark data. In their schemes, the amount of
embedding capacity is equal to the population of peak points in
histogram and the lower bound of PSNR (peak signal-to-noise ratio)
of the marked image versus original image is guaranteed to be
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higher than 48.13 dB. The work [6] is considered to be fundamental
for histogram based reversible watermarking schemes, afterwards
this method had been developed in many aspects and is extended
into the prediction-error (PE) based histogram shifting. In [8], Tsai
et al. utilize the residual histogram of the predicted errors of the
host image to embed the watermark data. Later, Tai et al. [9] present
a reversible data hiding method using the binary structure to solve
the problem of communicating pairs of peak points. By utilizing the
distribution of pixel differences, the method [9] can easily achieve
the high embedding capacity while keeping the distortion low.
Another mainstream reversible method is PEE based scheme which
combines the strategy of expanding and histogram shifting. Since
the modifications are small after doubling the prediction error, PEE
based scheme is effective as it not only causes less embedding
distortion at low embedding rate but obtains high embedding rate
for a single layer. One representative method of PEE based schemes
is the method [7] proposed by Sachnev et al. In [7], Sachnev et al.
sort the prediction-error and start the embedding from the pixels
with smallest in the sorted order. Recently, Luo et al. [5] utilize
interpolation errors, which is the differences between the interpola-
tion value and original pixel value, to embed secret data for
reversible watermarking. Since the modification of pixels was slight,
this method can preserve high image quality even a large amount of
covert data is embedded. However, there still exist two drawbacks
in the histogram shifting schemes: (1) the image quality degraded
seriously after multiple layer embedding when a high payload
watermarking was required, such as 1.0 bpp for lena image and
0.5 bpp for baboon image and (2) the principle to take advantages
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Fig. 1. Prediction pattern of X1 and X2: x0 denotes the watermarked pixel, and the

subscript 1,y,6 denote the prediction context.
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of pixel compensation have not been fully discussed yet in the
previous histogram shifting based reversible watermarking
schemes. Note that the pixel compensations will inevitably occur
during the consecutive histogram shifting operations because some
pixels will be added/substracted by 1 at first and substracted/added
by 1 later. The larger pixel compensations indicate the low embed-
ding distortion at the same embedding rate. Thus, how to make use
of the pixel compensation to balance the conflict between capacity
and distortion make significant sense, especially for the high
payload watermarking schemes.

To solve the above problems, a novel reversible watermarking
scheme based on optional histogram modification is proposed. In
this paper, we focus on discussing a method to modify prediction
error histogram and utilize it to improve the watermarked image
fidelity at high embedding level. Different from other methods,
we utilize the threshold to modify the generated prediction error
histogram and take pixel compensations into account by introdu-
cing the distortion increment. The strategy is efficient because the
embedding distortion is compensated partly after the multiple
optional histogram shifting operations and the overhead informa-
tion consumes little embedding capacity. The rest of paper is
organized as follows. The details of proposed scheme are
described in Section 2, and the performance comparisons with
other methods are given in Section 3. Finally, Section 4 concludes
this paper.
2. The proposed method

2.1. Optional prediction error histogram modification

For an 8-bit gray-scale host image X with H�W pixels,
X is defined as

X ¼ fxi,j9iA ½1,H�, jA ½1,W �g ð1Þ

where H and W denote the height and width of X, respectively, xi,j

denotes the gray-scale value of pixel, xi,jA ½0;255�. For reversi-
bility during prediction process, X is divided into two sub-images
X1 and X2 which consist of the pixels of odd rows and even rows
of the given image, respectively:

X1 ¼ fx2i�1,j9iA ½1,H1�, jA ½1,W �g

X2 ¼ fx2i,j9iA ½1,H1�, jA ½1,W �g ð2Þ

where H1 ¼ bH=2c. In general, the predictor utilizing full-closing
pixels as the prediction context obtains more accurate predictions
than predictors using half-closing pixels. Thus, we adopt the
prediction pattern as shown in Fig. 1 to involve the neighbor
pixels as many as possible. During the embedding procedure these
two sub-images are processed for data hiding by fixed order, e.g.,
use X1 as the context to predict X2 and obtain the watermarked
sub-image X02 first, then use X02 to obtain X01. Obviously, this order
must be inverse when data extraction is processing. This situation
is due to the fact that when we recalculate the predicted values,
the prediction context should be the same as in the data embed-
ding. Since both sub-images are processed similarly, we take the
pixel xi,j in X2 whose context is given as Ci,j ¼ fxk9kA ½1;6�g for
example to illustrate the optional histogram modification algo-
rithm. In the proposed scheme, we define two predictors to
calculate the prediction errors. The first predictor, which is similar
to the mean value predictor, is defined as

x̂
A
i,j ¼

x2þx5

4
þ

x1þx3þx4þx6

8
ð3Þ

Considering that the abrupt changes appear in texture areas, the
context of xi,j may contain the edge pixels and results in a bigger
prediction error. In the second predictor, we try to obtain a better
estimated value when we predict the pixels of texture by exclud-
ing the edge pixels from the prediction context. That is say, for the
texture area not all the six neighbor pixels are used for prediction
procedure in the second predictor. Thus, we use a measure of
regularity Rk based on squared difference to distinguish the edge
pixels

Rk ¼ ðxk�x̂
A
i,jÞ

2
ð4Þ

There are two reasons why we use the squared difference rather
than absolute difference: firstly, by magnifying the difference we
can easily distinguish the abrupt pixels and secondly, it tends to
assign larger weighted value to the homologous pixels, and
consequently maximizes the similarity between the prediction
and its context. Then we select the pixels in C whose Rk below the
threshold Th into an new prediction context with the regularity set
CR ¼ fRl9lA ½0,LðcÞ�g, where L(c) is the length of set. Thus, based on
Rl the second predictor is formulated as

x̂
B
i,j ¼

XLðcÞ
l ¼ 1

wlxl if CRa|, xlACR, 8Rla0 ð5Þ

where the associated weighted value wl is calculated in the
following manner:

wl ¼
1

Rl

� �� X
RACR

1

R

 !
ð6Þ

Eq. (6) is similar to a version of weighted mean, where the context
pixels with smaller Rl contribute more than others to the final
prediction. From (5), it is clear that the type B predictor with wl

make accurate results under the condition of Th when predicting
the pixels of texture. However, two extreme cases need to be
noticed: (1) the large value of Th results in the fact that abrupt
pixels are hardly excluded and (2) when the pixel to be predicted
is the abrupt pixel compared with its context, most of neighbor
pixels may be excluded, e.g., when xi,j ¼ 104 with the context 141,
64, 58, 82, 115, 55 and Th¼4, x̂ 0i,j ¼ 86:75, thus none of neighbor
pixels are used and the type A predictor is utilized. By tuning the
value of Th, the final prediction x̂i,j varies as

x̂i,j ¼
x̂

B
i,j if CRa|, xlACR,8Rla0

x̂
A
i,j else

8<
: ð7Þ

Particularly, when Th is equaled to 0, only the type A predictor is
utilized. The prediction error ei,j is obtained as

ei,j ¼ xi,j�roundðx̂i,jÞ ð8Þ
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where function roundð�Þ rounds the elements into the nearest
integers.
2.1.1. Pixel compensation

Because these two predictors generate different predictions in
general, the features of the prediction error histogram varies
along with Th. The features include the populations of peak points
and how sharply the prediction error histogram is, which indicate
the embedding capacity and embedding distortion, respectively.
Such variations in prediction error histogram determine the
degree of pixel compensation.

The pixel compensation is referred to the decrease of embed-
ding distortion on a single pixel during multiple histogram
shifting operations and it satisfies

xk
i,j�xi,jrxk�1

i,j �xi,j, kZ2

That is to say the new modified pixel value xk
i,j in the kth

histogram shifting operation is more closed to original pixel value
compared to the previous modified value xk�1

i,j . Of course, the
compensation quantity xk

i,j�xk�1
i,j is needed to take into account

and will be discussed in the selection of Th. An example of the
pixel compensation during the multiple layer embedding is
illustrated by Fig. 2. From Fig. 2, it is clearly that after one
histogram shifting operation xi,j can be compensated when
Th¼0 in the next histogram shifting operation, but if Th¼100
the distortion of xi,j is not reduced. We call the above modification
of prediction error histogram varying along with the threshold Th

as optional prediction method. The purpose of the proposed
method is to optimize features of the prediction error histogram
by tuning the value of Th and utilizes the pixel compensation
Fig. 2. An example of pixel compensation between the consecutive histogram shifting o

are the two peak points of prediction error histogram.
between the multiple histogram shifting operations to improve
the performance in turn.
2.1.2. Threshold determination

To illustrate the mechanism that how Th is chosen to max-
imize the compensation quantity, we will given the description of
capacity and distortion for each single layer embedding in the
following. The embedding capacity Capk can be estimated by the
prediction error histogram as

Capk ¼ histkðLPÞþhistkðRPÞ ð9Þ

where histkð�Þ denotes the population of bins in the prediction
error histogram, LP (Left Peak point) and RP (Right Peak point)
denote the two highest bins in the prediction error histogram. Of
course, such estimation on capacity must follow the previous
order (first X2 and then X1) because we cannot predict the pixels
of X1 correctly before the embedding procedure of X2. Since the
histogram shifting operation modifies pixel at most by 1, after k

histogram shifting operations, the accumulative distortion impact
on the pixel f ðxi,jÞ is measured as an impact of MSE (mean square
error)

f ðxi,j;C1, . . . ,Ck�1,CkÞ ¼
Xk

l ¼ 1

Clðxi,jÞ

 !2

ð10Þ

where the function Clð�ÞAf�1;0,1g denotes the modification of
pixel in one histogram shifting operation. In this paper, we
assumed that the each layer are fully embedded for the simplicity
of analysis. Note that when we try to optimize the performance in
the kth layer embedding, the distortion of the previous k�1
histogram shifting operations is already fixed, so the distortion
peration: when Th¼0 in the next operation, the pixel compensation occurs. LP, RP
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of xi,j can also be represented as

f ðxi,j;Ck9C1, . . . ,Ck�1Þ ¼ f ðxi,j;C1, . . . ,Ck�1ÞþC
2
k ðxi,jÞ

þ2Ckðxi,jÞ �
Xk�1

l ¼ 1

Clðxi,jÞ

 !
ð11Þ

Compared with the k�1th histogram shifting operation, the
distortion increment Dkði,jÞ on xi,j is

Dkði,jÞ ¼Ckðxi,jÞ
2
þ2Ckðxi,jÞ �

Xk�1

l ¼ 1

Clðxi,jÞ

 !
ð12Þ

Provided that multiple layer embedding is required (kZ2),
because the values of C1, . . . ,Ck�1 are already fixed, the values
of f ðxi,j;C1, . . . ,Ck�1Þ and ð

Pk�1
1 Clðxi,jÞÞ are constant values

C2
k�1ði,jÞ, Ck�1ði,jÞ. Thus, Dkði,jÞAf0;1�2Ck�1ði,jÞ,1þ2Ck�1ði,jÞg.

Obviously, the compensation on xi,j occurs only Dkði,jÞ is negative
and the compensation quantity is equaled to Dkði,jÞ on this
condition. Thus, the relationship of MSE and the total Dk of all
the pixels is denoted as

MSE¼
XH

i

XW
j

ðf ðxi,j;Ck9C1, � ,Ck�1ÞÞ
2
¼
Xk

l ¼ 1

Dl ð13Þ

The best Th for each single layer indicates the corresponding
prediction error histogram with least distortion Dk while keeping
the same capacity. Of course, note that high payload and low
distortion are two conflict requirements for reversible water-
marking, the capacity may be reduced along with the decrease
of the distortion. To make a trade-off of capacity and pixel
compensation, the Th is preferentially selected as

Th¼ arg max
Thi

Capk

Dk

� �
ð14Þ

where Capk is the capacity in the kth layer.
2.1.3. Watermark embedding and extracting

The watermark embedding and extracting processes are the
same as the other HS schemes and formulates (15)–(18) are cited
from Luo et al.’s method [5]. The watermark bit b,bAf0;1g, is
embedded via (15)

e0i,j ¼

ei,jþsymbolðei,jÞ � b, ei,j ¼ LP or RP

ei,jþsymbolðei,jÞ � 1, ei,jAðLN,LPÞ or ei,jAðRP,RNÞ

ei,j else

8><
>: ð15Þ

where LN, RN denote the integers with no prediction error satisfy-
ing: e¼ LN,e¼ RN, respectively, and the function symbolð�Þ is
defined as

symbolðei,jÞ ¼
1, ei,jZRP

�1, ei,jrLP

(
ð16Þ

Finally, the watermarked pixel xw
i,j is obtained

xw
i,j ¼ roundðx̂i,jÞþe0i,j ð17Þ

At the receiver, the process of recovery will be operated at the
inverse order. If the prediction error equals to LP or RP, a watermark
bit ‘‘0’’ is extracted; if LP�1 or RPþ1 is encountered, ‘‘1’’ is
extracted. The inverse modification on prediction error is

ei,j ¼

e0i,j�symbolðe0i,jÞ � b, e0i,jA ½LP�1,LP� or e0i,jA ½RP,RPþ1�

e0i,j�symbolðe0i,jÞ � 1, e0i,jA ½LNLP�1� or e0i,jA ½RPþ1,RN�

e0i,j else

8>><
>>:

ð18Þ
Finally, the original pixel is recovered as

xi,j ¼ roundðx̂i,jÞþei,j ð19Þ

2.2. Algorithm description

To guarantee reversibility, some auxiliary information should
be recorded before secret data embedding. For each layer embed-
ding a corresponding auxiliary information L is composed of three
parts: the value of Th; the values of two pairs of peak points,
namely LPs, RPs, to tell whether the pixel embeds watermark
bit; a location map to classify boundary pixels with the value of
1 or 255 which may cause ambiguities. Note that the marked
boundary pixels for each layer embedding will keep unchanged to
avoid the over/underflow cause by increment/decrease modifica-
tion on them. Denote the length of bit stream L after the
compression of arithmetic coding as Ls. Ls is embedded in the
LSBs (Least Significant Bit) of pixels in the last three rows
of the given image by simple LSB replacement. For reversibility,
these Ls replaced LSBs will be appended after watermark bit
stream P. In addition, because only the last layer may not be fully
embedded, an extra information EC, which records the number of
layers and how many bits are embedded in the last layer, is
appended after L of the last layer for the calculation of capacity.
Fig. 3 shows the block diagram of embedding procedure and
extracting procedure.

Fig. 4 shows the two extra information formats for the last
embedding layer and the other embedding layers. Both of them
consist of LPs and RPs (4�9¼36 bits), Th (8 bits), EOS (end of
symbol, 8 bits) and the location map. As the size of other parts in
format is fixed, it is clearly to distinguish the location map when
we extract L. The difference in formate is that EC is added in the
type B format, which consists of 18 bits (218

¼512�512) and
6 bits to illustrate that how many watermark bits and how many
layers are embedded, respectively.

2.2.1. Embedding procedure

The embedding procedure is described as follows:
�
 Step (1) Embed the payload P and the replaced LSBs. For every
pixel in embedding area, calculate the prediction error by
optional histogram shifting algorithm as discussed in Section
2.1. Then using (15), embed watermark bit in its prediction
error and decrement/increment it. The embedding order
should be fixed, e.g., first get X02 and then X01. Only after an
exhausted embedding in X2, X1 can be processed.

�
 Step (2) Embed auxiliary information Ls. Choose the auxiliary

information and form L according to the embedding layer.
Embed the compressed auxiliary information Ls into the LSBs
of pixels in the boundaries of given images. For standard
images, the last three rows of given image are used to restore
Ls as its size is only dozens of bits.

�
 Step (3) Obtain watermarked image. If P is not completed and

this layer is full embedded, go to step (1) for next layer
embedding; if P is completed, EC is also embedded in the last
embedding layer by LSB replacements and the watermarked
image is obtained.

2.2.2. Extracting procedure

The extracting procedure is processed as the inverse order:
�
 Step (1) Extract auxiliary information L. Collect the LSBs of
pixels in the specific area of watermarked image and form L

after decompression. Differently only the first extracting
layer’s LSBs contains EC.



Fig. 4. Extra information formats: (a) in the other embedding layer and (b) in the

last embedding layer.

Fig. 3. (a) Embedding procedure. (b) Extracting procedure.
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�
 Step (2) Data extraction and recovery. Predict every pixel in
embedding area as the order discussed in Section 2.1, extract
watermark bit and recover it using (18) and (19).

�
 Step (3) Obtain payload P. If the number of extracted water-

mark bits is equal to the capacity calculated by EC, stop
extraction and form P; else go the next layer extraction and
repeat above steps. When the current layer is fully extracted,
classify the extracted bit stream into watermark bits and
restore the pixels in the last three rows by simple LSB
replacement.
3. Experiments

In this section, we will discuss the performance of the
proposed method. Fig. 5 gives the comparisons with the previous
methods: Luo et al.’s [5], Sachnev et al.’s [7], Tsai et al.’s [8], and
Tai et al.’s [9]. All experiments are tested on commonly used
standard images sized 512�512: lena, baboon, airplane, and
sailboat. Compared with these methods, our method can obtain
higher PSNR improvement at high payload by utilizing pixel
compensation.

Compared with method [5] method, our method achieves
better performance for simple texture images, but for complex
texture image we are nearly the same. For lena image, when the
embedding rate is nearly 0.3 bpp, the PSNR of both methods is
almost the same, but as the embedding rate increase, our method
outperforms method [5]. When the embedding rate is 1.14 bpp,
the improvements are over 1.75 dB. Even the embedding rate is
1.20 bpp, PSNR can still be 31.0 dB high. For baboon image, the
improvements on the PSNR of ours is slightly below method [5] at
low embedding level. Only when the embedding rate is about
0.3 bpp, ours begins to outperform method [5]. At 0.5 bpp the
improvement is about 0.97 dB. For the other two images airplane
and sailboat, our method always outperforms the method [5]. The
method [7] is based on the prediction error expanding technique.
In their scheme, the sorting technique is utilized to reduce the
huge distortion caused by expanding technique. At low capacity
the method [7] is nearly the same as histogram shifting schemes
(the proposed method and the method [5]), but it clearly outper-
forms in a range of 0:4� 0:8 bpp, especially in smooth image as
airplane. However, as the capacity increases, the image fidelity
degrades seriously than ours because its expanding distortion is
magnified in its second embedding layer than the distortion
caused by conventional histogram shifting. In Fig. 5(c) and (d),



Fig. 5. The performance evaluation of proposed method compared with recent methods over standard test images: (a) lena, (b) baboon, (c) airplane and (d) sailboat.

Fig. 6. Capacity versus embedding layers for test images.
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the performance curves of method [9] and method [7] are not
plotted as these experimental results are not mentioned in their
papers. Fig. 6 gives the embedding level versus the pure payload.
From Fig. 4, it is seen that the proposed method has better
performances on smooth image than texture image, and obtains
higher improvements of PSNR at high embedding rate (after
multiple layer embedding) than at low embedding rate. Besides,
Table 1 gives the detailed experimental results on the four
images.

To illustrate the compensation of our method on image quality
at the high embedding level, Table 2 gives results with optimal Th

compared to the results with four selected values of Th. Since we
just consider optimization of the current embedding layer, the
experiment is taken on the assumption that the former embed-
ding layers are processed with optimal Th already. Compared with
other Th, DD is the reduction of distortion for a single layer by
utilizing optimal Th. For the same embedding rate, the larger DD,
the more improvements on PSNR. As Table 2 shown, the stimula-
tion with optimal Th is advantageous as it yields more pixel
compensations (the larger value of DD) at the same embedding
rate. In Table 2, for a single layer the effect of pixel compensation
on texture image is less than smooth one as DD is smaller on
average. This result demonstrates that the pixel compensation
definitely improve the quality of watermarked image by reducing
D as indicated in Section 2.1. It is worth noting that DD of two
different layers are not comparable because the accumulation of
Ck�1ði,jÞ amplifies the difference. Besides, as the table shown, the
improvement on PSNR is weak for a single layer embedding, but
gradually become stronger as it accumulates after multiple layer
embedding finally. That is why the proposed method performs
better at high embedding rate.

In addition, the disadvantages of previous work are inability to
control the values of prediction error. Our methods are able to
remove this shortcoming and make the selection mechanism of
prediction error histogram into computable criteria. Fig. 7 depicts
variations of Capk=Dk by tuning the value of Th. Considering there
exist many combinations of Cap and D, Th should be iteratively
adjusted for 256 times in theory in order to achieve the maximum
value of Capk=Dk. Here, the value of Capk=Dk indicates the balance
of higher embedding capacity with less distortion. The largest
value of Capk=Dk is selected as the optimal selection of Th. A
drawback of our simulation is that much more time are consumed
compared to the other HS schemes during the embedding process
as we considering the optimization of Th. which is implemented
on a Intel Core2 Duo 3.00 GHz CPU with 2 G RAM. The compu-
table complexity of our method is OðEL � NÞ, where EL, N are the
numbers of embedding layers and the candidates of Th, respec-
tively. It can be seen that the runtime is mainly determined by



Table 1
Detail results of the standard images. C, Th, V and Ls refer to the embedding capacity, the selection of threshold, the values of LPs and RPs and the compressed extra

information, respectively. The unit of C and Ls is bits. ‘‘–’’ refers to the unavailable.

Images Pure capacity C for the embedding layer EL¼0,y,9

1 2 3 4 5 6 7 8 9

Lena

C 74,160 125,803 163,709 196,267 221,617 245,262 266,312 276,536 286,759

Th 342 462 182 0 442 0 22 692 0

V {0,�1,0,�1} {3,2,3,�3} {4,3,4,�4} {�1,�2,�2,�3} {�8,�9,6,�6} {8,�4,�9,�10} {5,4,11,7} {1,�8,4,0} {13,9,3,1}

Ls 98 130 98 98 130 130 98 98 98

Baboon

C 21,574 41,812 60,713 78,014 94,450 110,074 124,938 139,487 �

Th 372 362 482 542 542 672 1 92 �

V {0,�1,0,�1} {3,�4,3,�4} {6,�7,6,5} {9,2,9,�8} {7,�5,�3,�5} {�13,�14,�1,�9} {�8,�9,16,�18} {16,�19,5,4} �

Ls 98 98 98 98 98 98 98 98 –

Airplane

C 86,717 138,569 178,913 213,307 240,570 263,900 284,715 303,353 320,917

Th 862 0 0 0 0 0 0 0 0

V {1,0,1,0} {�1,�2,�2,�3} {2,1,4,3} {5,�5,1,0} {8,�1,8,�2} {�3,�4,�5,�6} {�7,�11,�9,�10} {3,�9,7,�13} {6,1,5,4}

Ls 258 354 370 514 570 658 754 1,130 1,114

Sailboat

C 40,868 72,457 98,147 119,721 138,936 156,474 172,307 186,332 199,544

Th 522 542 0 792 0 0 0 0 0

V {1,0,1,0} {�2,�3,�3,�4} {5,4,5,4} {�6,�7,�1,�2} {2,1,9,2} {5,�1,�9,�10} {�4,�5,�6,�7} {�8,�15,9,�15} {14,13,6,�3}

Ls 130 130 130 130 130 130 130 130 130

Table 2

The improvements of PSNR between the optimal selection of Th and four selected value of Th. EL, ER, DP and DD refer to the sequence number of embedding layer,

embedding rate in a single layer, improvements of PSNR and reductions of D, respectively. ‘‘–’’ refers to the value of Th is optimal already.

EL Th Lena Baboon Airplane Sailboat

ER DP DD ER DP DD ER DP DD ER DP DD

2 0 0.197 0.3309 56,980 0.0702 0.2523 64,762 – – – 0.1185 0.0743 27,595

502 0.1967 0.0042 1073 0.0728 0.0012 870 0.1947 0.0933 16,785 0.1205 0.0026 332

1002 0.1969 0.0035 606 0.0728 0.0042 934 0.1947 0.0967 17,073 0.1201 0.0102 2391

1502 0.1967 0.0055 1214 0.0729 0.0034 517 0.1948 0.0934 16,696 0.1201 0.0108 2090

3 0 0.1431 0.0227 8065 0.059 0.0889 44,681 – – – – –

502 0.1446 0.0047 1104 0.0614 0.0011 746 0.1476 0.0534 9838 0.0959 0.1501 44,783

1002 0.1446 0.0064 1511 0.0615 0.0025 983 0.1475 0.0602 12,560 0.0961 0.1461 42,459

1502 0.1446 0.0066 1537 0.0615 0.0025 957 0.1475 0.0604 12,529 0.0961 0.1464 42,915

4 0 – – – 0.0513 0.183 153,313 – – – 0.0817 0.0111 7890

502 0.1239 0.0008 3236 0.053 0.0013 1150 0.1268 0.0325 16,315 0.0819 0.0111 7689

1002 0.1236 0.006 7046 0.053 0.0016 1357 0.1265 0.0436 23,640 0.0823 0 351

1502 0.1236 0.0059 6895 0.053 0.0014 782 0.1264 0.069 22,585 0.0823 0.0006 300

5 0 0.0967 0.0778 71,892 0.0459 0.1059 123,998 – – – – – –

502 0.0965 0.0629 54,256 0.0471 0.0006 370 0.0937 0.5093 564,790 0.0716 0.0226 27,825

1002 0.0966 0.0622 53,808 0.0471 0.001 458 0.0936 0.5144 569,535 0.0715 0.0275 33,000

1502 0.0965 0.0645 56,094 0.0471 0.0011 962 0.0936 0.4662 535,989 0.0715 0.0276 33,101

6 0 – – – 0.0428 0.0345 22,806 – – – – – –

502 0.0833 0.3064 383,800 0.0442 0.0001 289 0.0848 0.0337 47,263 0.0617 0.0963 156,123

1002 0.0855 0.2841 353,034 0.0442 0.0005 594 0.0848 0.0375 52,705 0.0621 0.091 151,804

1502 0.0844 0.2942 368,923 0.0442 0.0005 870 0.0848 0.0386 52,817 0.0619 0.0937 155,542
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EL and N, but is irrelevant the content of image. Of course, the
runtime of high resolution images is more than the runtime of
low high resolution images as the much more pixels are
processed. Table 3 gives the average runtime comparisons of
embedding process for the different value of EL and N on the sized
512�512 standard images. From the table, the average runtime
of a single layer with n¼50, 100, 150, 256 are 0.88 min, 1.77 min,
2.60 min, 4.38 min, respectively. In fact, through our experiments,
the most of neighbor differences fall into the range of 0–100 and
the optimal results are determined by the prediction errors with
the most populations. So the selection of Th can be limited in the
range of f12,22,32, . . . ,1002

g in practical applications to reduce



Fig. 7. Corresponding Capk=Dk (y-axis) for a range of Th (x-axis) at different embedding rate: (a–d) lena, (e–h) baboon, (i–l) airplane and (m–p) lake. The optimal selection

of Th is marked by a circle. (a) 0.48 bpp, (b) 0.75 bpp, (c) 1.0 bpp, (d) 1.2 bpp, (e) 0.16 bpp, (f) 0.27 bpp, (g) 0.32 bpp, (h) 0.49 bpp, (i) 0.68 bpp, (j) 0.92 bpp, (k) 1.16 bpp,

(l) 1.29 bpp, (m) 0.28 bpp, (n) 0.46 bpp, (o) 0.6 bpp, and (p) 0.76 bpp.

Table 3
The average runtime comparisons of embedding process for different value of EL

and N on the sized 512�512 standard images. The unit of runtime is

minute (min).

N EL

1 2 3 4 5 6 7

50 0.88 1.76 2.65 3.53 4.4 5.26 6.17

100 1.81 3.59 5.39 7.16 8.92 10.63 12.38

150 2.61 5.16 7.77 10.38 13.03 15.61 18.23

256 4.51 8.85 13.25 17.59 21.87 26.25 30.66

Table 4
The runtime comparisons of a single layer for tested images (lena, baboon,

airplane, and sailboat). The unit of runtime is second (s).

Images Proposed method Luo et al.’s [5] Sachnev et al.’s [7]

Th¼100 Th¼150

Lena 103.90 152.45 5.37 10.14

Baboon 99.14 148.54 5.23 9.44

Airplane 102.69 162.71 4.85 9.07

Sailboat 103.07 157.36 4.79 10.22
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the more than half of the computable complexity. In addition, the
watermark image for such a high embedding rate is not often
necessary in commercial use. So, 5–7 layers are enough for the
size of payload. Table 4 shows the runtime comparisons with Luo
et al.’s [5] and Sachnev et al.’s [7] for a single layer on tested
image. It can be seen that the runtime of Luo et al.’s [5] and
Sachnev et al.’s [7] are far more less than ours as their theoretical
computation complexity is O(1).

At last, another experiment is tested on the ten military
images as Fig. 8 shown and the curve of performances are plotted
in Fig. 9. The average embedding rate is 0.814 bpp with 31.32 dB
on average. It illustrates that our method definitely satisfies the
practical applications because 0.5 bpp for the sized 512�512
image is equaled to 130k bits, not mention to the high-resolution
images in the internet. Fig. 10 shows the gain in PSNR of proposed
method comparing with Luo et al.’s method [5] for 150 gray-scale
images. All the tested images are downloaded from the USC-SIPI
image database at the web site of http://sipi.usc.edu/database/. In
principle, Luo’s method is kind of HS scheme, which is very
similar with ours as it need to multiple layer embedding to obtain
high embedding rate. Different from their embedding process, our
method put emphasize on the optimization of embedding process
by utilizing pixel compensation during multiple layer embedding
and hence to reduce the distortion at the high embedding rate.
That is to say, our method is better than Luo’s at high embedding
rate because the effect of pixel compensation become stronger as
the layers increase. The fact is confirmed by our experiments as
shown in Fig. 10. It is clearly that our method gains more
improvements of PSNR at high embedding rate compared with
Luo et al.’s [5]. In addition, a phenomenon is found through the
abundant experiments that our method performs better for the
kind of images which need multiple layer embedding for the high
payload. But for the too flat or two complex images, the difference
of performances between ours is very small. The reason is that for
the too flat images only the high embedding rate as 1.0 bpp is
easily achieved by 2–3 layers embedding and for the complex
images the correlation of neighborhood pixels are too weak to
modified the prediction-error histogram by tuning Th.
4. Conclusion

In this paper, a reversible watermarking scheme using optional
prediction error histogram modification is proposed. Two differ-
ent predictors adaptively selected by Th are employed to make

http://sipi.usc.edu/database/


Fig. 8. The 10 military images used for the experiments: A1–A10.

Fig. 9. The performances of the 10 military images.

Fig. 10. Gain in PSNR of proposed method comparing with Luo’s method [5] at 10 specific capacity (0:1 bpp� 1:0 bpp), for 150 gray-scale images.
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the selection mechanism of prediction errors into computable
criteria, and higher PSNR at high embedding rate can be achieved
by utilizing pixel compensation and optimizing the prediction
error histogram during multiple layer embedding process.
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